

237 Leaf Wetness Sensor

Revision: 01/2021

Copyright © 1988 – 2021 Campbell Scientific CSL I.D - 506

This equipment is guaranteed against defects in materials and workmanship. We will repair or replace products which prove to be defective during the guarantee period as detailed on your invoice, provided they are returned to us prepaid. The guarantee will not apply to:

- Equipment which has been modified or altered in any way without the written permission of Campbell Scientific
- Batteries
- Any product which has been subjected to misuse, neglect, acts of God or damage in transit.

Campbell Scientific will return guaranteed equipment by surface carrier prepaid. Campbell Scientific will not reimburse the claimant for costs incurred in removing and/or reinstalling equipment. This guarantee and the Company's obligation thereunder is in lieu of all other guarantees, expressed or implied, including those of suitability and fitness for a particular purpose. Campbell Scientific is not liable for consequential damage.

Please inform us before returning equipment and obtain a Repair Reference Number whether the repair is under guarantee or not. Please state the faults as clearly as possible, and if the product is out of the guarantee period it should be accompanied by a purchase order. Quotations for repairs can be given on request. It is the policy of Campbell Scientific to protect the health of its employees and provide a safe working environment, in support of this policy a "Declaration of Hazardous Material and Decontamination" form will be issued for completion.

When returning equipment, the Repair Reference Number must be clearly marked on the outside of the package. Complete the "Declaration of Hazardous Material and Decontamination" form and ensure a completed copy is returned with your goods. Please note your Repair may not be processed if you do not include a copy of this form and Campbell Scientific Ltd reserves the right to return goods at the customers' expense.

Note that goods sent air freight are subject to Customs clearance fees which Campbell Scientific will charge to customers. In many cases, these charges are greater than the cost of the repair.

Campbell Scientific Ltd, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 270924

Email: support@campbellsci.co.uk www.campbellsci.co.uk Please note that this manual was originally produced by Campbell Scientific Inc. primarily for the North American market. Some spellings, weights and measures may reflect this origin.

Some useful conversion factors:

Area: 1	in^2 (square inch) = 645 mm ²	Mass:	1 oz. (ounce) = 28.35 g 1 lb (pound weight) = 0.454 kg
Length:	1 in. (inch) = 25.4 mm 1 ft (foot) = 304.8 mm 1 yard = 0.914 m	Pressure:	1 psi (lb/in ²) = 68.95 mb
	1 mile = 1.609 km	Volume:	1 UK pint = 568.3 ml 1 UK gallon = 4.546 litres 1 US gallon = 3.785 litres

In addition, while most of the information in the manual is correct for all countries, certain information is specific to the North American market and so may not be applicable to European users.

Differences include the U.S standard external power supply details where some information (for example the AC transformer input voltage) will not be applicable for British/European use. *Please note, however, that when a power supply adapter is ordered it will be suitable for use in your country.*

Reference to some radio transmitters, digital cell phones and aerials may also not be applicable according to your locality.

Some brackets, shields and enclosure options, including wiring, are not sold as standard items in the European market; in some cases alternatives are offered. Details of the alternatives will be covered in separate manuals.

Part numbers prefixed with a "#" symbol are special order parts for use with non-EU variants or for special installations. Please quote the full part number with the # when ordering.

Recycling information

At the end of this product's life it should not be put in commercial or domestic refuse but sent for recycling. Any batteries contained within the product or used during the products life should be removed from the product and also be sent to an appropriate recycling facility.

Campbell Scientific Ltd can advise on the recycling of the equipment and in some cases arrange collection and the correct disposal of it, although charges may apply for some items or territories.

For further advice or support, please contact Campbell Scientific Ltd, or your local agent.

Campbell Scientific Ltd, 80 Hathern Road, Shepshed, Loughborough, LE12 9GX, UK Tel: +44 (0) 1509 601141 Fax: +44 (0) 1509 270924 Email: support@campbellsci.co.uk www.campbellsci.co.uk

Safety

DANGER — MANY HAZARDS ARE ASSOCIATED WITH INSTALLING, USING, MAINTAINING, AND WORKING ON OR AROUND **TRIPODS, TOWERS, AND ANY ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC**. FAILURE TO PROPERLY AND COMPLETELY ASSEMBLE, INSTALL, OPERATE, USE, AND MAINTAIN TRIPODS, TOWERS, AND ATTACHMENTS, AND FAILURE TO HEED WARNINGS, INCREASES THE RISK OF DEATH, ACCIDENT, SERIOUS INJURY, PROPERTY DAMAGE, AND PRODUCT FAILURE. TAKE ALL REASONABLE PRECAUTIONS TO AVOID THESE HAZARDS. CHECK WITH YOUR ORGANIZATION'S SAFETY COORDINATOR (OR POLICY) FOR PROCEDURES AND REQUIRED PROTECTIVE EQUIPMENT PRIOR TO PERFORMING ANY WORK.

Use tripods, towers, and attachments to tripods and towers only for purposes for which they are designed. Do not exceed design limits. Be familiar and comply with all instructions provided in product manuals. Manuals are available at www.campbellsci.eu or by telephoning +44(0) 1509 828 888 (UK). You are responsible for conformance with governing codes and regulations, including safety regulations, and the integrity and location of structures or land to which towers, tripods, and any attachments are attached. Installation sites should be evaluated and approved by a qualified engineer. If questions or concerns arise regarding installation, use, or maintenance of tripods, towers, attachments, or electrical connections, consult with a licensed and qualified engineer or electrician.

General

- Prior to performing site or installation work, obtain required approvals and permits. Comply with all governing structure-height regulations, such as those of the FAA in the USA.
- Use only qualified personnel for installation, use, and maintenance of tripods and towers, and any attachments to tripods and towers. The use of licensed and qualified contractors is highly recommended.
- Read all applicable instructions carefully and understand procedures thoroughly before beginning work.
- Wear a hardhat and eye protection, and take other appropriate safety precautions while working on or around tripods and towers.
- **Do not climb** tripods or towers at any time, and prohibit climbing by other persons. Take reasonable precautions to secure tripod and tower sites from trespassers.
- Use only manufacturer recommended parts, materials, and tools.

Utility and Electrical

- You can be killed or sustain serious bodily injury if the tripod, tower, or attachments you are installing, constructing, using, or maintaining, or a tool, stake, or anchor, come in contact with overhead or underground utility lines.
- Maintain a distance of at least one-and-one-half times structure height, or 20 feet, or the distance required by applicable law, whichever is greater, between overhead utility lines and the structure (tripod, tower, attachments, or tools).
- Prior to performing site or installation work, inform all utility companies and have all underground utilities marked.
- Comply with all electrical codes. Electrical equipment and related grounding devices should be installed by a licensed and qualified electrician.

Elevated Work and Weather

- Exercise extreme caution when performing elevated work.
- Use appropriate equipment and safety practices.
- During installation and maintenance, keep tower and tripod sites clear of un-trained or non-essential personnel. Take precautions to prevent elevated tools and objects from dropping.
- Do not perform any work in inclement weather, including wind, rain, snow, lightning, etc.

Maintenance

- Periodically (at least yearly) check for wear and damage, including corrosion, stress cracks, frayed cables, loose cable clamps, cable tightness, etc. and take necessary corrective actions.
- Periodically (at least yearly) check electrical ground connections.

WHILE EVERY ATTEMPT IS MADE TO EMBODY THE HIGHEST DEGREE OF SAFETY IN ALL CAMPBELL SCIENTIFIC PRODUCTS, THE CUSTOMER ASSUMES ALL RISK FROM ANY INJURY RESULTING FROM IMPROPER INSTALLATION, USE, OR MAINTENANCE OF TRIPODS, TOWERS, OR ATTACHMENTS TO TRIPODS AND TOWERS SUCH AS SENSORS, CROSSARMS, ENCLOSURES, ANTENNAS, ETC.

Table of Contents

PDF viewers: These page numbers refer to the printed version of this document. Use the PDF reader bookmarks tab for links to specific sections.

1. Introduction1
2. Precautions 1
3. Initial Inspection1
4. QuickStart 1
5. Overview
6. Specifications3
7. Installation4
7.1Sensor Preparation
8. Operation7
8.1 Calculating Wet Time Fraction
9. Troubleshooting9
10. References9
Appendices
A. Importing Short Cut Code Into CRBasic Editor A-1
B. Example Programs B-1
Figures
7-1. Example 237 Field Installation
Tables
7-1. Wire Colour, Function, and Datalogger Connection

7-2.	Measurement Instructions, Parameters, Results7
9-1.	Symptom/Causes
	• •

CRBasic Examples

B-1.	CR1000 Program ExampleB-1
В-2.	CR200(X) Program ExampleB-1

1. Introduction

The 237 Leaf Wetness Sensor measures leaf wetness by determining the electrical resistance on the surface of the sensor (a wet surface is less resistant). It is primarily used to determine the percentage of time that a leaf surface is wet, versus the time it is dry.

NOTE This manual provides information only for CRBasic dataloggers. For Edlog datalogger support, see an older manual at *www.campbellsci.com/old-manuals*.

2. Precautions

- READ AND UNDERSTAND the *Safety* section at the front of this manual.
- Although the 237 is rugged, it is also a highly precise scientific instrument and should be handled as such.
- The 237 is designed for short duration ac excitation; dc excitation or continuous ac excitation may damage the sensing grid.
- The black outer jacket of the cable is Santoprene® rubber. This compound was chosen for its resistance to temperature extremes, moisture, and UV degradation. However, this jacket will support combustion in air. It is rated as slow burning when tested according to U.L. 94 H.B. and will pass FMVSS302. Local fire codes may preclude its use inside buildings.

3. Initial Inspection

- Upon receipt of the 237, inspect the packaging for any signs of shipping damage and, if found, report the damage to the carrier in accordance with policy. The contents of the package should also be inspected and a claim filed if any shipping related damage is discovered.
- The model number is printed on a label at the connection end of the cable. Check this information against the shipping documents to ensure the correct product is received.

4. QuickStart

Short Cut is an easy way to program your datalogger to measure the 237 and assign datalogger wiring terminals. Short Cut is available as a download on *www.campbellsci.eu*. It is included in installations of *LoggerNet*, *RTDAQ*, *PC400*, or *PC200W*.

Use the following procedure to get started.

- 1. Open Short Cut and select to create a new program.
- 2. Double-click the datalogger model.
- Under the Available Sensors and Devices list, select the Sensors | Miscellaneous Sensors folder. Double-click 237 Leaf Wetness Sensor to move the selection to the Selected device window. The wet/dry transition point needs to be determined for each application and sensor (Section 8.2, *Calibration (p. 8)*). Post-processing will be required to determine parameters such as the percent of time wet (Section 8.1, *Calculating Wet Time Fraction (p. 8)*).

Progress	Available Sensors and Devices		Selected Measurement	s Available for Output
1. New/Open	Search	Exact Match	Sensor	Measurement
2. Datalogger	CR1000	^	▲ CR1000	
3. Sensors	> Sensors		 Default 	BattV
4. Output Setup	> Geotechnical & Structural			PTemp_C
5. Adv. Outputs	> 🔁 Meteorological	_		
6. Output Select	Miscellaneous Sensors			
7. Finish	CS10 Current Transformer			
	CS11 Current Transformer			
Viring		th Potential Transf		
Wiring Diagram	GPS16X-HVS GPS Receiver	6	237 Leaf Wetness Sensor (Version: 2	.5)
Wiring Text	-] JC Ultrasonic Depth Sensor (analog)	roperties Wiring	
		Sensor	wining	-
			Resistance koh	ims kilohms
	SR50/SR50A Sonic Ranging S	lancor Y	Resistance Roi	
	<	Sensor >	Resistance Ko	
		Sancor >		
	< CR1000	<u> </u>		Wetness Sensor
	CR1000 Select the sensors to be m category, double-click the	heasured from the Availa	Model 237 Leaf	Wetness Sensor ance: kilohms
	CR1000 Select the sensors to be m	heasured from the Availa	Model 237 Leaf Units for Resist The wet/dry tr	Wetness Sensor

4. After selecting the sensor, click **Wiring Diagram** to see how the sensor is to be wired to the datalogger. The wiring diagram can be printed now or after more sensors are added.

Short Cut (CR1000) C:\Can Eile Program Tools Help			×
Progress 1. New/Open 2. Datalogger 3. Sensors 4. Output Setup 5. Adv. Outputs 6. Output Select 7. Finish Wiring Diagram Wiring Text	CR1000 CR1000 Wiring Diagram for untitled.scw (Wiring details can be found in the help file.) 237 - kohms CR1000		
	Pint As sensors are added to the Selected Sensors table, they are added automatically to this wiring dagram. Wiring dagram is a graphical depiction of the sensor leads and where each should be wired to the datalogge panel. The wiring text provides a let of the datalogge channels and the sensor wires attached to each of the datalogge channels and the sensor wires attached to each of the datalogge rough and one for the multiplexer. From the tabs at the top of the wiring dagram (or wiring text) for the dataloge the multiplexer. From the tabs at the top of the wiring dagram (or wiring text) window, select the datalogge channels.	er wiring annel. I ogger	

- Select any other sensors you have, then finish the remaining *Short Cut* steps to complete the program. The remaining steps are outlined in *Short Cut Help*, which is accessed by clicking on Help | Contents | Programming Steps.
- 6. If *LoggerNet*, *PC400*, *RTDAQ*, or *PC200W* is running on your PC, and the PC to datalogger connection is active, you can click **Finish** in *Short Cut*

and you will be prompted to send the program just created to the datalogger.

 If the sensor is connected to the datalogger, as shown in the wiring diagram in step 4, check the output of the sensor in the datalogger support software data display to make sure it is making reasonable measurements.

5. Overview

The 237 is often used for plant pathology applications because plant diseases are often associated with wet leaves. Duration of wetness and air temperature during wetness are inputs to many disease models.

The sensor emulates a leaf, thereby approximating the wetness state of surrounding foliage. To determine leaf wetness, the 237 uses a circuit board with interlacing gold-plated fingers. Condensation on the sensor lowers the resistance between the fingers, which is measured by the datalogger. Droplets must touch two fingers simultaneously to change the sensor resistance. For this reason, the 237 is typically coated with flat latex paint, which spreads water droplets.

The colour and type of paint affect sensor performance. Campbell Scientific supplies the sensor unpainted because individual modifications will vary with the application. The paper listed in Section 10, *References (p. 9)*, describes the effects of paint colour and sensor angle on sensors of this type.

The resistance of the sensor at the wet/dry transition point should be determined. A sharp change in resistance occurs in the wet-dry transition on the uncoated sensor; normally the transition is between 50 and 200 k Ω . Coated sensors have a poorly defined transition which normally occurs from 20 k Ω to above 1,000 k Ω . For best results, the leaf wetness sensor should be field calibrated since the transition point will vary for different areas and vegetation.

Features:

- Sensor is shipped unpainted so customer can choose appropriate surface finish that best fits their application
- Imitates characteristics of a leaf
- Compatible with Campbell Scientific CRBasic dataloggers: CR200(X) series, CR300 series, CR6 series, CR800 series, CR1000X, CR1000, CR3000, CR5000, and CR9000(X)

6. Specifications

Resistance at Wet/Dry Transition:	normally 50 and 200 k Ω (uncoated sensor); normally 20 to 1000 k Ω (coated sensor)
Operational Temperature Range:	0 to 100 °C
Short-Term Survivability Temperature Range:	-40 to 150 °C; sensor may crack when temperature drops below -40 °C

Width:	7.1 cm (2.75 in)
Length:	7.6 cm (3.0 in)
Depth:	0.64 cm (0.25 in)
Weight:	91 g (3 oz) with 10 ft cable

7. Installation

If you are programming your datalogger with *Short Cut*, skip Section 7.3, *Wiring to Datalogger (p. 5)*, and Section 7.4, *Datalogger Programming (p. 6)*. *Short Cut* does this work for you. See Section 4, *QuickStart (p. 1)*, for a *Short Cut* tutorial.

7.1 Sensor Preparation

Water droplets that form at the onset of condensation are often too small to bridge the electrodes and so remain undetected. Droplets can be detected earlier in formation by application of a non-conductive spreader to the surface of the sensing grid. The spreader most commonly employed is flat latex paint. Campbell Scientific supplies only uncoated sensors since coating preferences vary between applications.

NOTE	Campbell Scientific has not researched, nor does it recommend,
	paint formulations. The following information regarding paint
	formulation is intended only to introduce the concept.

Applying a thin coat of flat latex paint on the sensor surface is a generally accepted practice in plant disease and other applications. Besides providing some protection for the gold-plated electrodes, this paint allows tiny water droplets to spread and bridge the electrodes.

Gillespie and Kidd¹ found that paint colour had significant effects on performance and found off-white worked well. Their paint was formulated with one part black pigment to 1000 parts white paint. East² found that greater precision is obtained using a high quality flat latex paint. Some researchers and agricultural weather networks do not paint the sensor.

NOTE Before painting the sensor, clean it gently with alcohol.

However the surface is prepared, the response of the sensor is, in reality, only an index against which actual leaf wetness can be estimated. While the absence of a spreader will decrease sensitivity and increase the chance of scratching the gold-plated electrodes, bare sensors may grant greater consistency and less maintenance across a network.

7.2 Sensor Deployment

The sensor should not come in contact with leaves. The sensor is not supplied with a mounting bracket. Gillespie and Kidd¹ found that sensor orientation affects performance. As with surface preparation, orientation varies across applications and users. A common practice is to mount the sensor such that it

receives minimal direct sunlight at mid-day during the growing season. Gillespie and Kidd favour a 60 degree tilt on a north facing sensor such that water runs away from the cable connection to minimize puddling on the electrodes. FIGURE 7-1 shows a simple-to-construct mounting bracket.

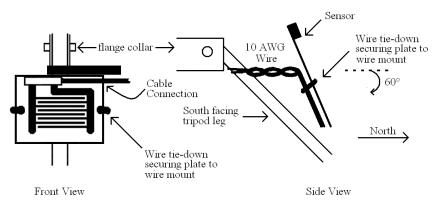


FIGURE 7-1. Example 237 Field Installation

7.3 Wiring to Datalogger

FIGURE 7-2 is a circuit schematic of the 237. TABLE 7-1 describes wiring to Campbell Scientific dataloggers.

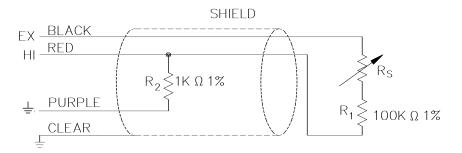


FIGURE 7-2. 237 Sensor Schematic

TABLE 7-1. Wire Colour, Function, and Datalogger Connection				
Wire Colour	Wire Function	Datalogger Connection Terminal		
Black	Voltage- excitation input	U configured for voltage excitation ¹ , VX or EX (voltage excitation input)		
Red	Analogue voltage output	U configured for single-ended analogue input ¹ , SE (single-ended, analogue-voltage		
Purple	Bridge resistor lead	input)		
Clear	EMF shield	≟ (analogue ground)		
¹ U channels are automatically configured by the measurement instruction.				

7.4 Datalogger Programming

Short Cut is the best source for up-to-date datalogger programming code.

If your data acquisition requirements are simple, you can probably create and maintain a datalogger program exclusively with *Short Cut*. If your data acquisition needs are more complex, the files that *Short Cut* creates are a great source for programming code to start a new program or add to an existing custom program.

NOTE *Short Cut* cannot edit programs after they are imported and edited in *CRBasic Editor*.

A Short Cut tutorial is available in Section 4, QuickStart (p. 1). If you wish to import Short Cut code into CRBasic Editor to create or add to a customized program, follow the procedure in Appendix A, Importing Short Cut Code Into CRBasic Editor (p. A-1). Programming basics for CRBasic dataloggers are in the following section. Complete program examples for select CRBasic dataloggers can be found in Appendix B, Example Programs (p. B-1). Programming basics and programming examples for Edlog dataloggers are provided at www.campbellsci.com/old-manuals.

The datalogger program measures Vs/Vx and then uses this measurement to calculate resistance. Information about calculating the wet/time fraction is provided in Section 8, *Operation (p. 7)*. Refer to Appendix B, *Example Programs (p. B-1)*, for suggested implementation of measurement and processing concepts.

7.4.1 Measurement of Vs / Vx

The base measurement of the 237 sensor is Vs/Vx, where Vs is the voltage measured and Vx is the excitation voltage supplied by the datalogger. Vs/Vx is measured by the datalogger with the instructions and parameters listed in TABLE 7-2.

			Input	ons, Parameter			
Datalogger	Measurement Instruction	Excitation (mV)	Range Code	Integration/ f _{N1}	Multiplier	Offset	Result
CR6, CR1000X	BrHalf ()	2500	mV200 or mV200C ¹	15000	1	0	Vs/Vx
CR300	BrHalf ()	2500	mV2500	4000 Hz	1	0	Vs/Vx
CR200(X)	ExDelSE ()	2500	n/a	500 μs	0.0004	0	Vs/Vx
CR800, CR1000	BrHalf ()	2500	mV25 or mV25C ¹	250 μs	1	0	Vs/Vx
CR3000	BrHalf ()	5000	mV50 or mV50C ¹	250 μs	1	0	Vs/Vx

¹ The mV200C, mV25C, and mV50C input range codes check for an open connection indicating that no sensor is connected or a cable has been cleanly cut. If an open connection occurs, NAN will be returned. A floating voltage can occur that falsely indicates the presence of a missing sensor when the mV200C, mV25C, and mV50C input range codes are not used.

7.4.2 Calculating Sensor Resistance

The CRBasic program should include an expression that calculates sensor resistance. With reference to FIGURE 7-2, sensor resistance (Rs), expressed in $k\Omega$, is calculated as follows:

$$Rs = R_2 / (Vs/Vx) - R_2 - R_1$$

Therefore,

Rs $(k\Omega) = 1/(Vs/Vx) - 101$

Except for the CR200(X), Campbell Scientific also suggests including the following after the resistance calculation:

If Rs > 10000 Then
 Rs = 10000
EndIf

The high resolution of Campbell Scientific dataloggers can pick up very small signals, which can result in an erratic signal when the sensor is dry. The wet/dry transition is less than 1000 k Ω , and therefore, 10,000 k Ω gives plenty of range outside of what one would consider to be dry.

8. Operation

An exact range of measurements is impossible to give since the 237 is field calibrated. The sensor is not precise and the quality of water bridging the electrodes varies. As demonstrated in Appendix B, *Example Programs (p. B-1)*, a common practice is to measure grid resistance in k Ω using a one bin histogram to calculate at what fraction of the output interval the sensor is wet (Section 8.1, *Calculating Wet Time Fraction (p. 8)*). If resistance meets the threshold ($\leq 150 \text{ k}\Omega$ in the example program), the grid is considered wet. Since the output interval is 60 minutes, if the histogram fraction equals 0.33, the leaf was wet for 20 minutes during that hour.

8.1 Calculating Wet Time Fraction

Fraction of time wet are common data derived from 237 measurements. Calculating time fraction requires a wetness threshold. Refer to Section 8.2, *Calibration* (p. s), for more information on determining the threshold.

Fraction of time wet is calculated in all current Campbell Scientific dataloggers, except the CR200(X), by using the **Histogram()** instruction with a single bin and closed form. The bin select value for the histogram is the *Variable* containing sensor resistance (Rs). The lower limit of the histogram is zero, and the upper limit is the wet / dry threshold. This will give the fraction of the output interval that the sensor is wet. A fraction of time wet of 0.33 when the output interval is one hour means that the sensor was wet for 20 minutes during that hour.

Refer to Appendix B, *Example Programs (p. B-1)*, for information on calculating fraction of time wet with the CR200(X).

8.2 Calibration

A wet / dry threshold of 150 k Ω is used in Appendix B, *Example Programs (p. B-1)*. While this threshold may work well, refining the threshold for a specific sensor and installation is recommended. A sharp change in resistance occurs at the threshold on uncoated sensors. A less defined threshold occurs with coated sensors. The threshold of uncoated sensors is normally between 50 and 200 k Ω . The threshold of the coated sensor is normally between 20 and 1,000 k Ω .

The transition point varies for different areas, vegetation, and water quality. Therefore, for best results, the sensor should be field calibrated using the following procedure:

- 1. Clean the sensor gently with alcohol. Contaminants change the sensitivity of the sensor.
- 2. Place the sensor in the vegetation where the wetness is to be monitored.
- 3. When the vegetation is at the desired wetness, measure the resistance and use that resistance as the threshold.

9. Troubleshooting

TABLE 9-1. Symptom/Causes				
Resistive Value				
IEEE4	FP2	Causes		
INF, ≥ 99999, ≤ -99999	INF, ±7999	The 1 k Ω bridge resistor holds the input channel at 0 mV when the sensor is completely dry. However, the measurement may intermittently deviate from zero slightly, but still be within the resolution specifications of the datalogger. When this occurs, Rs = either a very large or a very small number.		
NAN, -100, -INF	NAN	NAN can indicate that no sensor is connected or a cable has been cleanly cut if the <i>mV200C</i> , <i>mV25C</i> , or <i>mV50C</i> range code was used for the BrHalf instruction.		
		Another cause of these outputs is a highly conductive state (> 25 mV) that occurs if the sensor is very wet with very ionic water.		
<	0	If the measured voltage exceeds 24.75 mV, but does not exceed the input voltage range, the result of the bridge equation becomes negative.		

TABLE 9-1 lists the causes of unusual resistance readings.

10. References

¹ Gillespie, T.J. and Kidd, G.E. 1978. Sensing duration of leaf moisture retention using electrical impedance grids. Can. J. Plant Sci. 58:179-187.

² East, David (Ohio State University). 1994. Field Testing of Phone Accessible Multi-Channel Datalogger for Tomato IPM Programs. Unpublished.

NOTE The citation of researcher does not imply the endorsement of Campbell Scientific products by any researcher or institution.

Appendix A. Importing Short Cut Code Into CRBasic Editor

Short Cut creates a .DEF file that contains wiring information and a program file that can be imported into the *CRBasic Editor*. By default, these files reside in the C:\campbellsci\SCWin folder.

Import Short Cut program file and wiring information into CRBasic Editor:

1. Create the *Short Cut* program. After saving the *Short Cut* program, click the **Advanced** tab then the **CRBasic Editor** button. A program file with a generic name will open in CRBasic. Provide a meaningful name and save the CRBasic program. This program can now be edited for additional refinement.

NOTE Once the file is edited with *CRBasic Editor*, *Short Cut* can no longer be used to edit the program it created.

- 2. To add the *Short Cut* wiring information into the new CRBasic program, open the .DEF file located in the C:\campbellsci\SCWin folder, and copy the wiring information, which is at the beginning of the .DEF file.
- 3. Go into the CRBasic program and paste the wiring information into it.
- 4. In the CRBasic program, highlight the wiring information, right-click, and select **Comment Block**. This adds an apostrophe (') to the beginning of each of the highlighted lines, which instructs the data logger compiler to ignore those lines when compiling. The **Comment Block** feature is demonstrated at about 5:10 in the *CRBasic* | *Features* video ▶.

Appendix B. Example Programs

Each example program measures leaf wetness and outputs a sample resistance and a time fraction the sensor is wet. In these examples, the output interval is set to 60 minutes, so a time fraction wet of .33 is equivalent to 20 minutes during that hour. Wetness threshold is set at 150 k Ω .

```
CRBasic Example B-1. CR1000 Program Example
Public Vs_Vx
Public Rs_kOhms
DataTable(Wetness,true,-1)
  OpenInterval
  DataInterval(0,60,Min,10)
  Sample(1, Rs_kOhms, FP2)
  Histogram(Rs_kOhms, FP2, 0, 1, 001, 1, 0, 150) 'Enter threshold in 8th parameter
EndTable
BeginProg
  Scan(60, Sec, 3, 0)
    BRHalf(Vs_Vx, 1, mV25, 1, VX1, 1, 2500, True, 0, 250, 1, 0)
   Rs_kOhms = (1 / Vs_Vx) - 101
   If Rs_kOhms > 10000 Then
      Rs_kOhms = 10000
    EndIf
    CallTable Wetness
  NextScan
EndProg
```

```
CRBasic Example B-2. CR200(X) Program Example
'CR200(X) Series Datalogger
Public Vs_Vx
Public Rs_kOhm
Public ScanIntervalWet
Public ScanIntervalSum
Public TimeFractionWet
DataTable (Wetness,1,-1)
  DataInterval (0,60,min)
                            'Interval must match IfTime interval (below)
  Sample (1,Rs_kohm)
  Sample (1,TimeFractionWet)
EndTable
BeginProg
  Scan (1,Min)
    'Measure Wetness
    ExDelSE(Vs_Vx,1,1,1,mV2500,500,.0004,0)
    'Zero measurement when measurement < 0
    If Vs_Vx < 0 Then Vs_Vx = 0
    Rs_kOhm = (1 / Vs_Vx) - 101
    'Sum Scan Intervals
    ScanIntervalSum = ScanIntervalSum + 1
    'Check if Leaf wetness is below 150 kOhms transition and count as time wet
    If Rs_kohm < 150 AND Rs_kohm > 0 Then
      ScanIntervalWet = ScanIntervalWet + 1
    EndIf
```

```
'Calculate Time Fraction Wet at top of each hour
If IfTime (0,60,Min) Then 'Interval must match data table interval
TimeFractionWet = ScanIntervalWet / ScanIntervalSum
ScanIntervalWet = 0
ScanIntervalSum = 0
EndIf
CallTable (Wetness)
NextScan
EndProg
```


Campbell Scientific regional offices

Australia

Location:	Garbutt, QLD Australia
Phone:	61.7.4401.7700
Email:	info@campbellsci.com.au
Website:	www.campbellsci.com.au

Brazil

Location:	São Paulo, SP Brazil
Phone:	11.3732.3399
Email:	vendas@campbellsci.com.br
Website:	www.campbellsci.com.br

Canada

Location:	Edmonton, AB Canada
Phone:	780.454.2505
Email:	dataloggers@campbellsci.ca
Website:	www.campbellsci.ca

China

Location:	Beijing, P. R. China
Phone:	86.10.6561.0080
Email:	info@campbellsci.com.cn
Website:	www.campbellsci.com.cn

Costa Rica

Location:	San Pedro, Costa Rica
Phone:	506.2280.1564
Email:	info@campbellsci.cc
Website:	www.campbellsci.cc

France

Location:	Vincennes, France
Phone:	0033.0.1.56.45.15.20
Email:	info@campbellsci.fr
Website:	www.campbellsci.fr

Germany

Location:	Bremen, Germany
Phone:	49.0.421.460974.0
Email:	info@campbellsci.de
Website:	www.campbellsci.de

India

Location:	New Delhi, DL India
Phone:	91.11.46500481.482
Email:	info@campbellsci.in
Website:	www.campbellsci.in

South Africa

Location:	Stellenbosch, South Africa
Phone:	27.21.8809960
Email:	sales@campbellsci.co.za
Website:	www.campbellsci.co.za

Spain

Location:	Barcelona, Spain
Phone:	34.93.2323938
Email:	info@campbellsci.es
Website:	www.campbellsci.es

Thailand

Location:	Bangkok, Thailand
Phone:	66.2.719.3399
Email:	info@campbellsci.asia
Website:	www.campbellsci.asia

UK

Location:	Shepshed, Loughborough, UK
Phone:	44.0.1509.601141
Email:	sales@campbellsci.co.uk
Website:	www.campbellsci.co.uk

USA

Location:	Logan, UT USA
Phone:	435.227.9120
Email:	info@campbellsci.com
Website:	www.campbellsci.com